Chapter 6 Chemical Bonding

Table of Contents

Section 1 Introduction to Chemical Bonding

Section 2 Covalent Bonding and Molecular Compounds

Section 3 Ionic Bonding and Ionic Compounds

Section 4 Metallic Bonding

Section 5 Molecular Geometry

Chapter 6 Section 1 Introduction to Chemical Bonding

Lesson Starter

- Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in contact with each other. Many people will experience a sense of being too close together.
- When atoms get close enough, their outer electrons repel each other. At the same time, however, each atom's outer electrons are strongly attracted to the nuclei of the surrounding atoms.
- The degree to which these outer electrons are attracted to other atoms determines the kind of chemical bonding that occurs between the atoms.

Chapter 6 Section 1 Introduction to Chemical Bonding

Objectives

- Define chemical bond.
- Explain why most atoms form chemical bonds.
- Describe ionic and covalent bonding.
- Explain why most chemical bonding is neither purely ionic nor purely covalent.
- **Classify** bonding type according to electronegativity differences.

Chapter 6	Visual Concepts
Chemical Bond	I
Ionic Bonding	

Chapter 6 Visual Concepts

Covalent Bonding

Comparing Polar and Nonpolar Covalent Bonds

Chapter 6 Visual Concepts

Using Electronegativity Difference to Classify Bonding

Chapter 6 Section 1 Introduction to Chemical Bonding

Chemical Bonding, continued

Sample Problem A

Use electronegativity values listed in **Figure 20** from the previous chapter in your book, on page 161, and **Figure 2** in your book, on page 176, to classify bonding between sulfur, S, and the following elements: hydrogen, H; cesium, Cs; and chlorine, Cl. In each pair, which atom will be more negative?

Chapter 6 Section 2 Covalent Bonding and Molecular Compounds

Objectives

- Define molecule and molecular formula.
- Explain the relationships among potential energy, distance between approaching atoms, bond length, and bond energy.
- State the octet rule.

Chapter 6

Section 2 Covalent Bonding and Molecular Compounds

Objectives, continued

- List the six basic steps used in writing Lewis structures.
- Explain how to determine Lewis structures for molecules containing single bonds, multiple bonds, or both.
- Explain why scientists use resonance structures to represent some molecules.

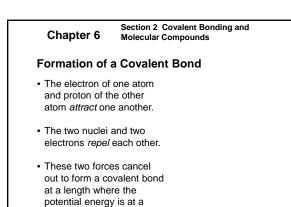
Section 2 Covalent Bonding and Molecular Compounds Molecular Compounds Molecule is a neutral group of atoms that are held together by covalent bonds. • A chemical compound whose simplest units are molecules is called a molecular compound.

Chapter 6 Section 2 Covalent Bonding and Molecular Compounds

Molecular Compounds

- The composition of a compound is given by its chemical formula.
- A chemical formula indicates the relative numbers of atoms of each kind in a chemical compound by using atomic symbols and numerical subscripts.
- A molecular formula shows the types and numbers of atoms combined in a single molecule of a molecular compound.

Chapter 6 Visual Concepts

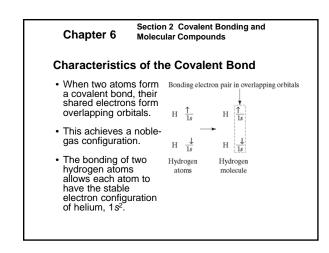

Chemical Formula

Structure of a Water Molecule

Chapter 6 Section 2 Covalent Bonding and Molecular Compounds

Formation of a Covalent Bond

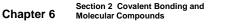
- Most atoms have lower potential energy when they are bonded to other atoms than they have as they are independent particles.
- The figure below shows potential energy changes during the formation of a hydrogen-hydrogen bond.


minimum.

Chapter 6 Mo

Section 2 Covalent Bonding and Molecular Compounds

Characteristics of the Covalent Bond

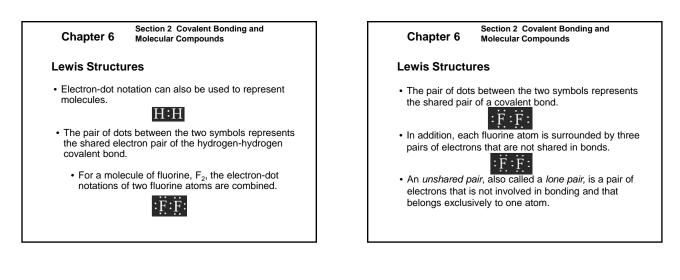

- The distance between two bonded atoms at their minimum potential energy (the average distance between two bonded atoms) is the *bond length*.
- In forming a covalent bond, the hydrogen atoms release energy. The same amount of energy must be added to separate the bonded atoms.
- Bond energy is the energy required to break a chemical bond and form neutral isolated atoms.

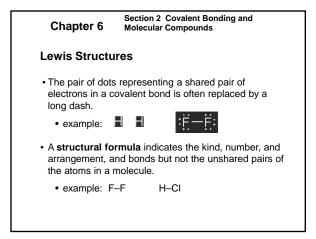
Chapter 6 Section 2 Covalent Bonding and Molecular Compounds

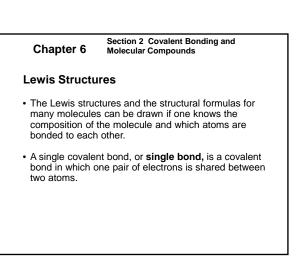
The Octet Rule

- Noble gas atoms are unreactive because their electron configurations are especially stable.
 - This stability results from the fact that the noble-gas atoms' outer *s* and *p* orbitals are completely filled by a total of eight electrons.
- Other atoms can fill their outermost *s* and *p* orbitals by sharing electrons through covalent bonding.
- Such bond formation follows the *octet rule:* Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an octet of electrons in its highest energy level.

The Octet Rule, continued Exceptions to the Octet Rule

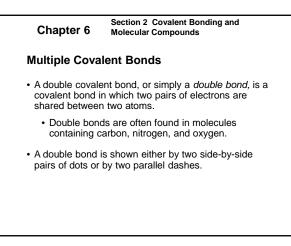

- Exceptions to the octet rule include those for atoms that cannot fit eight electrons, and for those that can fit more than eight electrons, into their outermost orbital.
 - Hydrogen forms bonds in which it is surrounded by only two electrons.
 - Boron has just three valence electrons, so it tends to form bonds in which it is surrounded by six electrons.
 - Main-group elements in Periods 3 and up can form bonds with expanded valence, involving more than eight electrons.

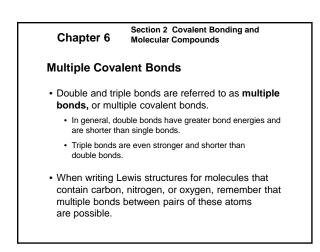

Chapter 6 Section 2 Covalent Bonding and Molecular Compounds


Electron-Dot Notation

- To keep track of valence electrons, it is helpful to use electron-dot notation.
- Electron-dot notation is an electron-configuration notation in which only the valence electrons of an atom of a particular element are shown, indicated by dots placed around the element's symbol. The inner-shell electrons are not shown.

Chapter 6Section 2 Covalent Bonding and
Molecular CompoundsElectron-Dot Notation, continuedSample Problem Ba. Write the electron-dot notation for hydrogen.b. Write the electron-dot notation for nitrogen.




Chapter 6 Section 2 Covalent Bonding and Molecular Compounds

Lewis Structures, continued Sample Problem C Draw the Lewis structure of iodomethane, CH₃I.

Chapter 6 Section 2 Covalent Bonding and Molecular Compounds Multiple Covalent Bonds

- A triple covalent bond, or simply a *triple bond*, is a covalent bond in which three pairs of electrons are shared between two atoms.
 - example 1—diatomic nitrogen:
 - example 2—ethyne, C₂H₂:

Chapter 6 Section 2 Covalent Bonding and Molecular Compounds

Multiple Covalent Bonds, *continued* Sample Problem D

Draw the Lewis structure for methanal, $\rm CH_2O$, which is also known as formaldehyde.

Chapter 6

Section 3 Ionic Bonding and Ionic Compounds

Objectives

- **Compare** a chemical formula for a molecular compounds with one for an ionic compound.
- Discuss the arrangements of ions in crystals.
- Define lattice energy and explain its significance.
- List and compare the distinctive properties of ionic and molecular compounds.
- Write the Lewis structure for a polyatomic ion given the identity of the atoms combined and other appropriate information.

Chapter 6 Section 3 Ionic Bonding and Ionic Compounds

Ionic Compounds

- Most of the rocks and minerals that make up Earth's crust consist of positive and negative ions held together by ionic bonding.
 - example: table salt, NaCl, consists of sodium and chloride ions combined in a one-to-one ratio— Na*Cl-—so that each positive charge is balanced by a negative charge.
- An **ionic compound** is composed of positive and negative ions that are combined so that the numbers of positive and negative charges are equal.

Section 3 Ionic Bonding and Ionic Compounds Ionic Compounds • Most ionic compounds exist as crystalline solids. • A crystal of any ionic compound is a threedimensional network of positive and negative ions mutually attracted to each other.

 In contrast to a molecular compound, an ionic compound is not composed of independent, neutral units that can be isolated.

Chapter 6 Section 3 Ionic Bonding and Ionic Compounds

Ionic Compounds, continued

- The chemical formula of an ionic compound represents not molecules, but the simplest ratio of the compound's ions.
- A formula unit is the simplest collection of atoms from which an ionic compound's formula can be established.
- Section 3 Ionic Bonding and Ionic Compounds

 Formation of Ionic Compounds

 • The sodium atom has two valence electrons and the chlorine atom has seven valence electrons.

 • Atoms of sodium and other alkali metals easily lose one electron to form cations.

 • Atoms of chlorine and other halogens easily gain one electron to form anions.

Chapter 6 Section 3 Ionic Bonding and Ionic Compounds

Formation of Ionic Compounds, continued

- In an ionic crystal, ions minimize their potential energy by combining in an orderly arrangement known as a crystal lattice.
 - Attractive forces exist between oppositely charged ions within the lattice.
 - Repulsive forces exist between like-charged ions within the lattice.
- The combined attractive and repulsive forces within a crystal lattice determine:
 - the distances between ions.
 - · the pattern of the ions' arrangement in the crystal

Chapter 6 Section 3 Ionic Bonding and Ionic Compounds

A Comparison of Ionic and Molecular Compounds

- The force that holds ions together in an ionic compound is a very strong electrostatic attraction.
- In contrast, the forces of attraction *between* molecules of a covalent compound are much weaker.
- This difference in the strength of attraction between the basic units of molecular and ionic compounds gives rise to different properties between the two types of compounds.

Chapter 6 Section 3 Ionic Bonding and Ionic Compounds

A Comparison of Ionic and Molecular

- Compounds, continued
- Molecular compounds have relatively weak forces between individual molecules.
 They mark to hum temperature
 - They melt at low temperatures.
- The strong attraction between ions in an ionic compound gives ionic compounds some characteristic properties, listed below.
 - very high melting points
 - hard but brittle
 - not electrical conductors in the solid state, because the ions cannot move

Chapter 6 Section 3 Ionic Bonding and Ionic Compounds

Polyatomic Ions

- Certain atoms bond covalently with each other to form a group of atoms that has both molecular and ionic characteristics.
- A charged group of covalently bonded atoms is known as a **polyatomic ion.**
- Like other ions, polyatomic ions have a charge that results from either a shortage or excess of electrons.

Chapter 6 Section

Section 3 Ionic Bonding and Ionic Compounds

Polyatomic Ions

- An example of a polyatomic ion is the ammonium ion: 10. It is sometimes written as 10. It is show that the group of atoms as a whole has a charge of 1+.
- · Draw the Lewis structure for ammonium:
 - The seven protons in the nitrogen atom plus the four protons in the four hydrogen atoms give the ammonium ion a total positive charge of 11+.

Chapter 6 Section 4 Metallic Bonding

Objectives

- **Describe** the electron-sea model of metallic bonding, and explain why metals are good electrical conductors.
- Explain why metal surfaces are shiny.
- Explain why metals are malleable and ductile but ionic-crystalline compound are not.

Chapter 6 Section 4 Metallic Bonding

Metallic Bonding

- Chemical bonding is different in metals than it is in ionic, molecular, or covalent-network compounds.
- The unique characteristics of metallic bonding gives metals their characteristic properties, listed below.
 - · electrical conductivity
 - · thermal conductivity
 - malleability
 - · ductility
 - · shiny appearance

Chapter 6 Section 4 Metallic Bonding

Metallic Bonding, continued

- Malleability is the ability of a substance to be hammered or beaten into thin sheets.
- **Ductility** is the ability of a substance to be drawn, pulled, or extruded through a small opening to produce a wire.

Chapter 6 Section 4 Metallic Bonding

The Metallic-Bond Model

- In a metal, the vacant orbitals in the atoms' outer energy levels overlap.
- This overlapping of orbitals allows the outer electrons of the atoms to roam freely throughout the entire metal.
- The electrons are *delocalized,* which means that they do not belong to any one atom but move freely about the metal's network of empty atomic orbitals.
- These mobile electrons form a *sea of electrons* around the metal atoms, which are packed together in a crystal lattice.

Chapter 6 Section 4 Metallic Bonding The Metallic-Bond Model, continued • The chemical bonding that results from the attraction between metal atoms and the surrounding sea of electrons is called metallic bonding.

Chapter 6 Visual Concepts

Metallic Bonding

Properties of Metals: Surface Appearance

Chapter 6 ^{Visual Concepts} Properties of Metals: Malleability and Ductility Properties of Metals: Electrical and Thermal Conductivity

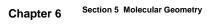
Chapter 6 Section 5 Molecular Geometry

Objectives

• Explain VSEPR theory.

Chapter 6 Section 5 Molecular Geometry

Objectives, continued


• **Describe** dipole-dipole forces, hydrogen bonding, induced dipoles, and London dispersion forces and their effects on properties such as boiling and melting points.

Section 5 Molecular Geometry Chapter 6

Molecular Geometry

- The properties of molecules depend not only on the bonding of atoms but also on molecular geometry: the three-dimensional arrangement of a molecule's atoms.
- · The polarity of each bond, along with the geometry of the molecule, determines molecular polarity, or the uneven distribution of molecular shape.
- Molecular polarity strongly influences the forces that act between molecules in liquids and solids.
- · A chemical formula, by itself, reveals little information about a molecule's geometry.

Section 5 Molecular Geometry Chapter 6 **VSEPR** Theory · As shown at right, diatomic molecules, like those of (a) Hydrogen, H₂ (a) hydrogen, H₂, and (b) hydrogen chloride, HCl, can only be linear because they consist of only two atoms (b) Hydrogen chloride, HCl · To predict the geometries of more-complicated molecules, one must consider the locations of all electron pairs surrounding the bonding atoms. This is the basis of VSEPR theory.

VSEPR Theory

- The abbreviation VSEPR (say it "VES-pur") stands for "valence-shell electron-pair repulsion."
- VSEPR theory states that repulsion between the sets of valence-level electrons surrounding an atom causes these sets to be oriented as far apart as possible.

 - example: BeF₂
 The central beryllium atom is surrounded by only the two electron pairs it shares with the fluorine atoms.
 - According to VSEPR, the shared pairs will be as far away from each other as possible, so the bonds to fluorine will be 180° apart from each other.

:F-Be-F:

• The molecule will therefore be linear:

SEPR and Molecular Geometry						
	Molecular shape	Atoms bonded to central atom	Lone pairs of electrons	Formula example	Lewis structure	
Trigonal- pyramidal	Ä	3	1	NH ₃	, Н Н Н Н	
Bent		2	2	H ₂ O	н	
Trigonal- bipyramidal	90° 120°	5	0	PCl5	ä:ä: ä–P :a:ä:	
Octahedral	90°-	6	0	SF ₆	: Ë : Ë : Ë: : Ë : F : Ë:	

Section 5 Molecular Geometry Chapter 6

Hybridization

- Take the simple example of methane, CH₄. The carbon atom has four valence electrons, two in the 2s orbital and two in 2p orbitals.
- · How does carbon form four equivalent, tetrahedrally arranged, covalent bonds?
 - Recall that s and p orbitals have different shapes. To achieve four equivalent bonds, carbon's 2s and three 2p orbitals hybridize to form four new, identical orbitals called sp3 orbitals.

Section 5 Molecular Geometry Chapter 6

Hybridization, continued

- The four (s + p + p + p) hybrid orbitals in the sp³-hybridized methane molecule are equivalent: they all have the same energy, which is greater than that of the 2s orbital but less than that of the 2p orbitals.
- · Hybrid orbitals are orbitals of equal energy produced by the combination of two or more orbitals on the same atom
- · Hybridization explains the bonding and geometry of many molecules.

Chapter 6 Section 5 Molecular Geometry

Intermolecular Forces

- The forces of attraction between molecules are known as *intermolecular forces*.
 - The boiling point of a liquid is a good measure of the intermolecular forces between its molecules: the higher the boiling point, the stronger the forces between the molecules.
 - Intermolecular forces vary in strength but are generally weaker than bonds between atoms within molecules, ions in ionic compounds, or metal atoms in solid metals.
- Boiling points for ionic compounds and metals tend to be much higher than those for molecular substances: forces between molecules are weaker than those between metal atoms or ions.

Chapter 6 Section 5 Molecular Geometry

Intermolecular Forces, continued

- The strongest intermolecular forces exist between polar molecules.
- Because of their uneven charge distribution, polar molecules have *dipoles*. A **dipole** is created by equal but opposite charges that are separated by a short distance.
- The direction of a dipole is from the dipole's positive pole to its negative pole.

Chapter 6	Section 5 Molecular Geometry
Intermolecular	Forces, continued
pointing toward the positive pole	esented by an arrow with its head the negative pole and a crossed tail at e. The dipole created by a hydrogen le is indicated as follows:
	$+ \rightarrow$

H-Cl

Chapter 6 Section 5 Molecular Geometry

Intermolecular Forces, continued

- The negative region in one polar molecule attracts the positive region in adjacent molecules. So the molecules all attract each other from opposite sides.
- Such forces of attraction between polar molecules are known as *dipole-dipole forces*.
- Dipole-dipole forces act at short range, only between nearby molecules.
- Dipole-dipole forces explain, for example the difference between the boiling points of iodine chloride, I–CI (97°C), and bromine, Br–Br (59°C).

Chapter 6 Section 5 Molecular Geometry

Intermolecular Forces, continued

- The small size of the hydrogen atom allows the atom to come very close to an unshared pair of electrons in an adjacent molecule.
- The intermolecular force in which a hydrogen atom that is bonded to a highly electronegative atom is attracted to an unshared pair of electrons of an electronegative atom in a nearby molecule is known as hydrogen bonding.

Chapter 6 Section 5 Molecular Geometry

Intermolecular Forces

- Hydrogen bonds are usually represented by dotted lines connecting the hydrogen-bonded hydrogen to the unshared electron pair of the electronegative atom to which it is attracted.
- An excellent example of hydrogen bonding is that which occurs between water molecules. The strong hydrogen bonding between water molecules accounts for many of water's characteristic properties.

Chapter 6 Section 5 Molecular Geometry

Intermolecular Forces, continued London Dispersion Forces

- Even noble gas atoms and nonpolar molecules can experience weak intermolecular attraction.
- In any atom or molecule—polar or nonpolar—the electrons are in continuous motion.
- As a result, at any instant the electron distribution may be uneven. A momentary uneven charge can create a positive pole at one end of an atom of molecule and a negative pole at the other.

Chapter 6 Section 5 Molecular Geometry

Intermolecular Forces, continued London Dispersion Forces, continued

- This temporary dipole can then induce a dipole in an adjacent atom or molecule. The two are held together for an instant by the weak attraction between temporary dipoles.
- The intermolecular attractions resulting from the constant motion of electrons and the creation of instantaneous dipoles are called **London dispersion forces.**
- Fritz London first proposed their existence in 1930.